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FOREWORD

This report to the Office of Naval Research describes both theoreti-

cal and experimnental efforts carried out under contract N00014-80-C-0498 dur-

ing the period June 6, 1980 through May 31, 1981. The program was carried out

at the Rockwell International Science Center, and was managed by Dr. Paul R.

Neman. The principal investigators were Mr. Mark D. Ewbank and Dr. Newylan.

Prof. Walter A. Harrison of Stanford University was a consultant on the

theoretical aspects of toie prugraim. Valuable contributions were also made by

Dr. Pochi Yeh, Mr. Randolph L. Hall and Dr. M. Khoshnevisan of the Science

Center. The contract mfonit_3r for the Office of Naval Research was

Dr. George Wright.
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1.0 INTRODUCTION

1.1 Program Objectives

This program has several long range objectives. The first and perhaps

foremost is to achieve a fuller understanding at the microscopic level, of the

physics leading to the electro-optic (E-O) effect in solids. A further goal is

to generate a completely generalized predictive methodology which takes as its

input atomic structure and elemental composition and successfully predicts the

electro-optic response for the material.

Additionally, efforts in electro-optic device development programs a~e

currently reaching performance levels limited not by device design, but rather

by materials characteristics. It is hoped that some of the future experimental

efforts of this program will lead to the successful identification, growth, and

characterization of new high performance electro-optic materials, so badly

needed by this emerging technology.

1.2 Previous Work

Work that is being carried out under this program has evolved from and

is a natural consequence of a Rockwell International IR&D program (Project 864

"Optical Materials") at the Science Center. During FY 1979 and 1980, work was

begun in conjunction with Prof. W.A. Harrison of Stanford University, on the

application of his "Bond-Orbital Model" 1- 3 or chemical-bond approach to the

prediction of the optical dielectric susceptibility of solids; specifically the

indices of refraction of solids. After several initial successes in predicting

1
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the first-order susceptibility, efforts evolved towards second-order "perturba-

tion-response" functions 4 such as the strain-optic effect and the dc electro-

optic (Pockels) effect. That portion of the effort which is specifically

oriented toward the electro-optic effect is the basis for this program which was

officially funded on June 1, 1980. The remainder of the work on the strain-

optic effect, the anomalous dispersion in the birefringence, and other basic

optical properties of solids will continue to be carried out at the Science

Center under IR&P funding. Clearly, there will be many synergistic advantages

both theoretically and experimentally in having such a comprehensive approach to

the generic topic of the interaction between light and solids.

1.3 Accompl ishments

There have been several significant achievements during the first phase

of this project. The theoretical work has progressed to first separating the

physical sources of the electro-optic effect into those which result primarily

fron electronic effects and those associated with lattice dynamics or "ionic-

displacive effects." The "Bond-Orbital Model" was then modified so that the

electronic contribution to the electro-optic effect could be calculated simply

and straightforwardly using "universal atomic" parameters and sums over chemical

bonds in the crystallographic unit cell. This theory was tested against TeO 2

and predicted an identically zero electronic contribution to the electro-optic

tensor in agreement with Kleinman's5 symmetry.

The ionic displacive part was next to be investigated. Here, a further

distinction was made between relative motions between ions which do not result

in a change in the unit cell dimensions, and those which do. The approach,

2
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although not completely evolved, has been to seek a mechanisn for calculating

the microscopic atomic "spring constants" and then relating these to some tnor,

easily measured bulk properties such as the Reststrahl frequency or bulk elastic

constants. It is hoped that this will enahle predictions of electro-optic

properties to be made with a mini'ium of experimental materials characterizatioi

input.

Finally, the experimental aspect of this program has been quite frjit-

ful. Original characterization measurements of the linear electro-optic effect

has been coinpleted in Te0 2 , and begin on another compound: T13AsSe 3. The

studies on this latter compound shDild he complete by late 19.31.

1.4 Technical Issuies

The most significant technical issue still to be resolved is the iden-

tification of those generalized aspects of atomic configuration and chemical

bonds that will allow us t) calculate the requisite electronic and lattice

responses to external perturbations (electric fields and strains).

1.5 Report Summary

The remainder of this report contains the details of our technical

approach and the results for both the theoretical and experimental aspects of

this program. Finally, there is a short summary of progress and some of our

future efforts. Appendix A is the paper on the experimental efforts on TeO 2,

submitted to the Journal of Applied Physics.

3
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2.0. TECHNICAL APPROACH

2.1 Theoretical

2.1.1 Electro-optic Coefficients

A requirement of any theoretical endeavor is that the theory must

include a connection to the experiment. In the case of the electro-optic

effect, the measurement gives an electro-optic coefficient, rij, which is

defined by the relation 6 -8

r. r (1)
DBij r iJkE k (I

or in reduced notation

= r k (2)

where ABij is the change in the relative optical dielectric impermeability and

Ek is the applied electric field. When the frequency of the perturbing electric

field is greater than the piezoelectric response, the crystal is considered to

be "clamped" and the measurement gives a constant strain electro-optic

coefficient, r jk Elastic deformation occurs for a low frequency (or dc)

perturbing field and this "unclamped" situation leads to a constant stress

electr-optic coefficient, r ijk The impermeability is defined by

3E
Bij -a- = (c = ()i (3)

4
C3485A/jbs

7I

11 i / l I l '' " : . .



Rockwell International
Science Center

SC5266.IFR

where cii is a dielectric constant, n refers to a refractive index and -I is

the inverse dielectric tensor.

The change in impermeability wit i dpplied field can be easily relat <

to a change in refractive index. Let nI be the effective refractive index fir a

particular set of propagation and polarization directions with no applied

electric field. Then let n2 be the effective index for the same set of

propagation and polarization directions b:ft now with the electric field

applied. The change in impermeability is

S1 n, I' - n~ (n I - n 2)(n I + n 2),,B = 67 --.... .

and, in the approximation that n 1 n2 - n and nI - n2 _ n, it becomes

3AB= -2n/n3  (5)

The sa:ne resjlt can be achieved from differentiation:

dB d 1 3 (6)
SF " n-7 - 2 n - 3

6

The explicit relationships between An and ABij have been derived 8 for optically

isotropic, uniaxial and biaxial crystals with the light propagating in an

arbitrary direction. For example, in uniaxial crystals, the change in the

ordinary refractive index is

An - AB1  + S~ AB 2  S

An0  - 2 A 8 1 (7)

5
C3489i/jbs

'1 I i ' ......... -



SineCenter

SC5266. IFR

for a propagation direction given by unit vect:or =(S 1 is2S 3  * (9,0,1). The

expression for the change in extraordindry refractive can be wvritten

r (ff') [S IS 2A9 1 11 + S 3~AR2? * (sI ? 2i 83 2S1SS3
2 AR 1 7 - 2S 2  1 S+s 2 ' A923  - 2SIS31- 1?1

Ane z------ --------- --- --- -- ---- --- 7-------- --------

where ne(eff) is the effective extraordi nary refractive indeK for the

propagation direction S 'S P2s s

nn
(eff) =

+ +

e& it i mj t~e iiiper ieahi Ii ty , and he-,ce thje ell t ro-optic CCoef fIiienqt, to a

c ha nge i n re f r a -- ive i nd e2 i s o f f un d a le nt alI inmpo rt*ance becaus 1) .- e Xpe~

-iental y, on, noli nal y meais ires tViis change in the index of refraction as a

funztion ),' appl iel electric- field and 2) theoretically, one calculates the

portir)a'i o of thie refrdCti V2 in-eK doe t.) the appl ied field .

2.1.2 Susceptibility

Traditionally, the refractive index is related to the microscopic

nature of a crystalline solid via the polarizability and susceptibility.9 In CGS

uni ts

n V! T'U 4 (10)

for isotropic materials in the linear regime. The electro-optic effect can be

viewed as one of many nonlinear perturbations to this linear SUsreptibility; in

6
C3485A/j bs

.. ... .S.



9 Rockwell International
Science Center

SC5266.1FR

particular, it corresponds to a second-order susceptibility. There are marny

conventions used for representing the nonlinear susceptibility coefficients.

One method, which is instructive but not rigorous, is to consider a Taylor's

series expansion of the induced polarization, I, in teruns of the three compo-

nents of the total electric field,

a ' Et + 1  b Et Et +
1 j j 2 k ijk k "

where the expansion has been done about the point t 0 anI it has been assumed

thit the indiced polarization for zero electric field is zero, i.e., pi(; t = O)

= 0. Note that the expaision coefficients are aij, bijk, etc. Now let the

total electric field be a superposition of two electric fields at frequencies .I

dril )

t = + (12)

In component form,

:t = E"; Im  + E (13)in

Substituting Eq. (13) into Eq. (11) yields

P6

7
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Pi = aij E  I + Ew, + jk b Jk j  + Eb? 2J(Ebl + E 2 ) +
1 2  ijk i j k k

b- b.
a I j E+a. E 2 +2 - E(IEt + -4 EkI+A4

7- i j K
3 j k 13jk

+.13 E")IEW2 + E' k IE j(2+14)
jk 23j k

Since, in the summations over j and k, j and k are only "dummy" indices, it is

possible to interchange j and k in the last tern and then conbine the last tvrn

teris by factoring out the electric field

Pi = a. E?' + a. E? + b ijk EjEkI + , bijk E',2E k
1 13 3j k' 1j 3 k jk

j ' k ijk bikj "k (15)

Now, explicitly include the frequency dependence of the fields:

") cos ,t (16

and

E 2  2 cosE(2) (17)

Substituting Eqs. (16) and (17) into Eq. (15) gives

C3485A/jbs
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Pt = a.E) cos + . 2) cos w2t + b--'P- cos, t
j 1J 3j jkE o k S t

+ --l-- E cos' w t + b + E EE cos)
2jk k2 + Iikj j k COS 2tt 2

Using the trigonometric relations of

1

cos cos s -. cos (.1 + j) cos (",- C) - cos (2,) + I

P a ai cos j + k4. EP)E() (cos 2,, t + 1)

+ i E(2)E(2)(cos 2,,t + 1) + 11b. bij k COS (, )t ,
i k 2 ~ 1T ljk + lj _k 1 21;

+h ik+ ("I + 2

jk * kj)j k C".

Expressing Pi as a superposition of its various frequency coiponents, i.e,

Pi P + P' + p?2 + + P2 ,- + 1J + P;" I + (1),

these separate components can he written out as

o bik 2(2)'- T  , )E ) + E )E k
1 k

jk

p = a E")b cos t bjp 2 1a 3 2)t , wnd

2l b 2(E 2~ (2)2w P ' o 2,, t P2J )E Cs2
i k4 J k I05 'k14jk k cs 22

i Tjk '

pI3)8+W2 =+
- ik ijk + ikj J k COS ( + w2)t .(0

9
C3485A/jbs
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By examining the frequency dependences if each of these terms, there is an

obvious correspondence to the physical phenomena of optical rectification,

second harmonic generation, and sum/difference mixing. In addition, for the

special case of w2 
= 0, the sum and difference mixing terms are equal and

correspond to the linear electro-optic (Pockel's) effect, which is an induced

polarization at the same frequency as the optical field and is proportional to

the dc electric field.

To define the higher order susceptibilities, one can write the induced

polarization in terms of increasing powers of electric field: 1 0

(I) E1  + X E K Xj(3 EJEE + (? )P i = J i j~ i j k < k k X j k z E " ' " F Z + i

i jk 2 Xk

where X(I) is the linear or first-order susceptibility, x(2) is the second-order

susceptibility, etc. Within this context, the linear Taylor series expansion

coefficients are identical to the first-order susceptibility tensor elements.

Combinations of the second-order Taylor series expansion coefficients correspond

to the second-order susceptibilities. While the above procedure is not

completely rigorous, it does provide the appropriate correspondences.

An alternate, but somewhat similar, approach in specifying suscepti-

bilities is to define the ith component of the polarization density vector as

the negative of the partial derivative of the total energy density with respect

to the it h component of electric field. Then, by expressino the total energy

density as a Taylor series expansion in the electric field, the susceptibility

coefficients can be related to the derivatives of this total energy density with

respect to the various fields. Still another method has been invoked in defin-

10
C3485A/j bs

W - ---- ,.



Rockwell International
:l Science Center

SC5266.1FR

ing the second-order susceptibility, which explicitly emphasizes the frequency

dependence. A general form of the second-order polarization can be written'1

= 2) (2) w, ''

) ) k Xij (_E - rj Ek(f,-w') d ' (22)

where negative frequencies are pernitted by assuming Ej , E(,-.),
J

The specific definitions for three second-order susceptibility are:
12

i) Second Harmonic Generation p i i  F k ,
jk

ii) dc Effect (Optical Rectification) PO = i E.' (24)1 j Xi k j  k

iii) Electro-Optic Effect P Xi  k Ek (25)

Note that these second-order susceptibilities are assumed to all be distinct

tensor quantities. The symmetry in the subscript indices for the three types of

susceptibilities is as follows. Second harmonic generation and optical rectifi-

cation susceptibilities are symmetric in j and k since interchanging two optical

fields of the same frequency is physically insignificant. The electro-optic

susceptibility is symmetric in i and k as seen from a quantum mechanical formu-

lation, utilizing the electric dipole approximation, or as seen from a thermo-

dynamics argument. This latter argument can be understood by investigating the

following question: "What is the total susceptibility that the optical field

'sees' when the dc field perturbs the first order susceptibility?" The

polarization is

C3485A/jbs
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(1 ) E k (26)
P xi + X- ijk% £k jk

wherXijke Xik in Eq. (25). For a principal axes coordinate system,

XP) is diagonal. To simplify the total susceptibility, consider the dc fieldXik•

to be along x i.e., E' = E' and E' = E' = O. Then

I x 2 3

(1) eo 0 PO0o eo 01 11  + X 1 1 E ] X 112F x X 113 X 1

eo E0 r (1) + eo o eo E0 E
P2  X21 x :-22 X21 ] 213 x

P eo E0  eo E 0 (1) + en oE
3 311 x X312 x K 33  +X 3 3  x E3

(27)

In order that this total susceptibility tensor be symmetric, which is a

requirement of thernodynamics, it is necessary that:

eo eo
Xijk i (28)

i.e., the "electro-optic" susceptibility is symmetric in the first and thirj

indices. This implies that the "condensed notation" is obtained by contracting

the two indices which do not refer to the dc field. In contrast, for both

second harmonic generation and optical rectification, the two indices of the

optical fields are "condensed."

Finally, by equating the change in refractive index, due to the

electro-optic susceptibility perturbing the linear susceptibility, with the

12
C3485A/jbs
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change in impermeability via the electro-optic coefficient (see Eq. (5)), a

direct relation between the second-order, electro-optic susceptibility,
eo
Xijk, and the electro-optic coefficient, rijk, may be obtained. A simple

technique for approximating this relation is to write the perturbed refractive

index as

n + An 1 + eo,+ I

- 1+ (1) (4, X°Ef)

-n 1+ 4eF / (29)

and then use the binomial expansion on the square root to give

l 1 r 4 eo E * .(3

Then, by referring to Eq. (5),

-eo,
2i eojE -nUF
An' (31)

which implies that

4 eo E(2A B - - 14,- - - (32)

and, since AB - rE from Eq. (1), one obtains

-4T eo
r - "(33)

Performing the rigorous matrix inversion required to convert the full

susceptibility tensor to the impermeability tensor yields the relation7 ,11 ,13

13
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"l -i - - ---I ' - --, -.... .-- - -, , 'i ",.---"



oi Rockwell International
Science Center

SC5266. IFR

eo

r kjijk (34)
Cii tkk

wr1 4 x) is the optical dielectric constant. Note that con-where ii = n=i+4ni i

vention implies "condensing" the first and second indices in rik j while "condens-
en

ing" the first and third indices in XJk. However, in both cases, the "con-

densed" indices do not refer to the static electric field. Also, the dielectric

constants reflect directions other than that specified by the static field.

Let's verify Eq. (34) for a specific example. Consider symmetry point

group 422 with the dc electric field applied in the <100> direction. Then, fro i

combining Eqs. (?) and (3) and using the electro-optic matrices in Kaminow &

Turner, 7 the perturbed impermeability is

1/n2  0 0 0
0

1/no  0 0 0
0

1/n2  0 0 0 E 1 2 0

B 0 + ri 0 0 0 0 1,n2 r4 1Ex (35)
2

0 0 -r4 0 0 r4 1/ne

0 0 0 0

where no is the ordinary index and ne is the extraordinary index. Referring to

Eq. (26), the perturbed susceptibility tensor can be written as

0 0eo E (36)

X 0 Xo X2 13 x

0 Xeo Ex
x312 x Xe

C3485A/jbs
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eo eo eo eoar th

since x213 = 1 - = are the only nonzero second-order susceptibi-

lities. Note the Xo and Xe are the linear ordinary and extraordinary suscepti-

bilities, i.e, n2 = 1 + 4Pio and n2 = I + 4nXe. From Eqs. (3) and (10),
0 e( 00X 0 

0  0 /n2 0 0

B+4 0 xo = 0 n2  4 AK  (37)

0 0 1 0 AX Xe 0 4u, x n2

where Ae has been defined as Keo Using the Ga:jss-Jordarwhee A ha ben dfind a , = 213E X312rEx .

matrix inversion technique to invert B- I gives

1
n 0 00

0 1 ( )2 4-
nT n - -- 4fVT-)YT 7n7 ,;7o oe0o e

n
2

0 -4 _ oT

0 0

0 o

0

00, , (33)

o oe e

in the limit that AX is small so that terms containing (AX)n where n > 1 are

taken to be zero. Now, equating the matrix elements in Eqs. (35) and (38)

implies that

r4 1E

15
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or -4 X213 -4T312

r4 1  -n- = - -- ( 39)

which is in exact agreement with Eq. (34).

2.1.3 Units

A recurring problen encountered when dealing with various nonlinear

quantities is comparing and converting between MKS and CGS units. It therefore

seems appropriate to summarize some of the conventions used in presenting

experimental data, along with a few conversion factors.

The experimnental electro-optic coefficient, rij, is generally expressed

in the MKS units of (meter/volt), whereas the second harmonic generation coeffi-

cient, dij, has often been given in the "catch-all" units of (esu) aid in the

MKS units of (meter/volt) or (coulomb/volt 2 ).

The ambiguity of tnie 'esu" can be cleared up by explicity expressing

the esu in CGS units. This ambiguity stens fron the multiple definitions for an

"esu." That is, I esu = 1 statcoulonb for charge, 1 esu 1 1 statvolt for poten-

tial, 1 esu 1 1 statamp for current, etc. For second harmonic generation

coefficients (or any other second-order nonlinear coefficient), an "esu" in CGS

units is defined as

esu = 1statcoulomb (40)

where I statvolt = 2.998 x 102 volts and 1 coulomb : 2.998 x 109 statcoulombs.

Another frequent problem concerning MKS units involves the MKS definition

of the permittivity of free space,

16
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S8.854 12 coulomb F newton-meter 8 10-12 coul omb
S8f6f r xx [ 6f -. = 8.854 x 1-meter

(41)

for several different reasons. First, it turns out that co is dimensionless anJ

numerically equal tj (4 )"1 when expressed in CGS units:

-12 coulomb [2.998 - 109 statcoulomb] [F2.998 102 volts]
° = 8.84 x 10"  volt-eter f -7of . . . x6 stavl--

Smeter FIstatvolt - centimeter ( 42

[10ceitineferjX stco Um J - (2

Secondly, there are two conventions for the relation defining the second harnonic

generation coefficient. These two relations, referring back to Eq. (23) for

comparison, are

P0 2, j k E PE (43)

i e jk j k

and

p2  = , d EWj E' (44)
1 o ijk j k

3k

where the two indicated second harmonic generation coefficients differ by a factor

of F-. That is to say,

coulomb !meter

dijk o = d ijk -v6Ff) (46)

Note that other second-order nonlinear coefficients, such as the electro-optic

coefficient, which can be expressed in units of (meters/volt), usually do not

require this factor of co when converting to other units. (Instead, use the

conversion factor (4ic.) which is dimensionless and equal to unity.)

17
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As a specific numerical example, consider the results of two different

second harmonic generation experiments on TeO 2. The first experiment 14 used

Eq. (44) to define d14 and reported a value of jd14 1 = 0.69 x 10
- 12 mj/V. The

second experiment 15 used Eq. (43) to define d14 and the result was Id141 = 1.45

10- 9 esu. In order to directly compare these two values, use Eq. (45) on 0.69 x

10- 12 m/V value so that the same definitions for the coefficient, d14 , is employed

and then convert to esu:

Id141 =co (0.69 x 10-12 m/V) = 6.1 x 10-24 coulomb )[2.993 
10' statcoulomb]

141 F & ofTb76a- -

2 s-t-a (,o.'-Volt ] 2 t -1 esu - 1.6 X 10-9 esU

(46)

which is in reasonable agreement with the other value of 1.45 X 10-9 esu.

The electro-optic coefficient, rij, the second harmonic generation

coefficient, dij, and the second-order susceptibility, X2)' all have the sae

dimensions, as is evident from Eqs. (25), (34), (43), and (44). Provided that

these coefficients are consistently defined, in contrast to the situation in

Eqs. (43) - (46), a particular coefficient may be expressed in units of

(meter/volt), (coulomb/volt 2), (esu), etc. by using the following conversions:

1 meter 854 -12 coulombmet1r134 = 10-10 coulomb
x 8. 10 vt tieter I.113 x1 (47)

1 coulomb [2.998 x 109 statcoulob [ 2.998 x 102 Volt [ 1 s
vTt2 X coulomb x L statvolt .statcoulombst-t-olT ]

= 2.695 x 10+ 14 esu (48)

18
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1 meter 1.113 1 0- 0 coulomb/volt 2  4.5 10+1 esu 2.998 x 10" esu

-- voTt -- mete --t _F OI -x- -- nb- o tT [2..6 1 s

(49)

1 m-tef- 10 ---- tm eter ... . q9 x L- avolt = 2.9T3) S 0 entimete-

where each quantity in the square brackets, [ ], is dimensionless and has a

value of unity. As a numerical example, utilizing these conversion factors, let

us determine the electro-optic susceptibility (in esu) for GaAs associated with

an experimental electro-optic coefficient of r41  1.2 x 10- /12 nV and a

refractive index of n = 3.60. Using Eqs. (34) and (49),

eo 6)e.4 -

213 -(3.60) 41.2 "j - 12 m/V1, 2.99.3 x 104 esu)/ 4 1  -4.3 x I 7 esu.

(51)

Finally, from a theoretical point of view, the most convenient repre-

sentation for these dimensions (see ROM section below) is charge 3!eneryy2. To

be compatible with this form (and, in addition, combining the results from

Eqs. (49) and (50)), 'q. (40) can be rewritten as:

I statcoul 1 centimeter I statcoulomD3e su = M st t t - stat -o t erg (52)

since 1 statcoulomb 1 centimeter-statvolt and 1 statvolt 1 erg/statcoulonb.

19
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2.1.4 Bond Orbital Model

2.1.4.1 Introduction

One form of tight-binding theory, the Bond Orbital Model (BOM), has

previously been used to desc-ibe numerous electronic and lattice properties )'

crystalline solids. As originally formulated by Prof. W.A. Harrison of Stanfjrd

University, the BOM was applied to tetrahedrally coordinated solids, in parti-

ctilar, to the elenental and zinchlende semiconductors. 1'2  Specifically, this

model has been used to calculate the dielectric properties of tetrahedral

solids, includinj the refractive index fur the zinchlendes I and for the

chalcopyrites, 16 alonj with second-order optical susceptibilities for wurtzite

aid zinchlende compounds. 1 7  Further refinements in the tight-binding paraietr-

iz3tion have pre.iously occurred1 '3 ,19 and are still in progress. 20 These new

sets of paramieters do not affect the basic tenets of the BOM formalism itself,

bit enter only when applying the theory to certain specific cases. The BOM has

recently been reviewed in detail and its scope of applicability has been

extended to include other crystal symmetries. 3

2.1.4.2 Susceptibility

The lowest-order susceptibility can be expressed with the BOM through

an expansion of the total energy in the electric field. The second-orde- sus-

ceptibility is then realized by carrying the expansion to one higher order in

the electric field. The simplifying concept of the BOM, which permits a "first

principles" prediction of the dielectric properties, is the following. By

20
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calculating the change in polarization in each "chemical" bond ca:jsed by the

optical electrical field, one obtains the total susceptibility by suviing up th.;

contributions froin each individual bond. When the crystal geometry (i.e., eaic ,

bond) is perturbed by a dc electric field, the polarization associated with each

bond changes. Consequently, the susceptibility is also modified and it is this

change in susceptibility with respect to the dc electric field which corresponds

to the linear electro-optic (Pockels) effect.

An alternative, but equivalent, procedure is to directly associate tie

change in polarization per bond due to both the optical and dc electric field-;

witi the so;cond-order susceptibility. In the BOM, the dipole mo:-ient, p, of elici

boiJ is written as

_e-ej, P eyl V3 (v • V2+ ) "1/2 (53\

where e is the electronic charge, y is the "center-of-gravity" for hybrid orbi-

tals, a is the interatoni: distance vector between the two bonding atoms, c;) is

the "polarity" of the bond, V2 is the "covalent" bond energy, and V3 is the

"polar" bond energy. With reference to Eq. (22), the first-order susceptibil-

ity, ,(I), is the average change in dipole moment responding to the optical

electric field, toPt. In addition, the second-order susceptibility, X(2 ) , is

the average change in dipole moment responding to both topt and the dc electric

field, tdc These two susceptibilities can be expressed as derivatives in these

electric fields by

d(1) :I d (54)
v bonds dEopt

and

21
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(2) 1 Z d2+ (55'
v bonds

where the average has been obtained by systematically summing over ea,:h type of

bond in the crystal and then dividing by the volume, v, occupied by those bonds.

The derivative of the dipole moment per bond with respect to one or

both of the electric fields can be written in terms of partial derivatives of

the dipole moment per bond with respect to various BOM parameters or interatolic

distance, multiplied by the change in that particular BOM parameter as a func-

tion of the appropriate electric field. This is just an application of the

chain-rule fur partial differentiation.

For example, the derivative in the first-order susceptibility becomes

+V , V 3
dp, _ d ,_P + + '-O---' ; Vp  . (55),d opt, opt ,ad laEopt (56)2 " E pt"- '

Each partial derivative can be evaluated separately. By making the assumption

that the frequency of the optical electric field is high enough so that the

lattice cannot respond to it (i.e., greater than the Reststrahl frequency), the

interatomic distance can be taken to be independent of the optical electric

field. In other words,

0 (57)

Since the covalent energy can be represented as being proportional to the square

of the interatomic distance, i.e.,

22
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2.)16v2 = - d7--(

where Ii is Planck's constant divided by 2n and ri is the electron mass (i 2 /m

7.62 eV-'?), the chain-rule gives

3r 211vV2 , d 2

3Eop EO a'u

Therefore, only tile "polar" bond energy teri in Eq. (56) is nonzero. Evaluatinj

this ter-n yields

- eyd V1 "V, _ V2-31? (60,))TV2 2 3,
and

--- T; - - ye• pt 2  (61)

where EOPt is the unit vector giving the direction of the optical electric

field. This last equation results frow the change in energy due to the inter-

action of the dipole with the total electric field. This dipole energy is

- yel . (topt + tdc)/ 2. Finally, by substituting Eqs. (57), (59), (50) and (61)

into Eq. (56), t'le first order susceptibility can now be written as

(1) -2e2 Vi _' t

where EOpt is a unit vector in the jth direction which represents the optical

electric field.

23
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Following a similar procedure for the second-order susceptibility, the

derivative of Eq. (56) with respect to the dc electric field becomes

d~j = Vjlo ~ + ~1 (63)
dEopdEd aF D a 3 D3c DE c2 aE 3

where any terns involving the variation of interatomic distance with the optic"'

electric field have been dropped. Noting that

3 Ye dc
ye 12 (64)

and
2  3e y3V V 3

3 V.

2 3)

in addition to using Eq. (61), implies that the "electronic" portion of the

second-order susceptibility can be written as

id, •o

xijk (electronic) : v on 1' + V k (66)

bonds (V2 + V2,5/2

This contribution to the second-order susceptibility has been called the "elec-

tronic" part since it has been derived from the deformation of the electron dis-

tribution in the bond. The deformation of the electron cloud due to both the

optical and dc electric fields results in a change in the "polarity" of the bond.

Another contribution to the second-order susceptibility arises from

those terms in Eq. (63) which involve the lattice response to the dc field.

This "lattice" contribution has been further divided into an "ionic displacive"

24
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part and "piezoelectric/photoelastic" part. The "ionic displacive" component

involves only the relative motions of the atoms whereas the "piezoelectric/

photoelastic" component allows a piezoelectric strain or bulk lattice distor-

tion. The reason for this last division is to permit compatibility with dis-

tinction of a "clamped" or "unclamped" measurement of the electro-optic coef-

ficient. A "clamped" measurement corresponds to a second-order susceptibility

which includes only the electronic and the ionic displacive lattice contribu-

tions, and not the piezoelectric/photoelastic portion.

The "lattice" contribjtion to the second-order susceptibility is ob-

tained by combining Eq. (55) witn the first two terms of Eq. (63). Eva atin

eacn factor in this latter equation, fhr which an explicit, simplifying expres-

sion can be obtained, implies

V) V , -3/2

=P - -5e/V2 V 2  - V7)
2V2-22  3

+ e-dv V2 2V2 ; V,) V21 5 2 (.

3 V22 2 3' .2 3

and, just as in Eq. (59),

V

_VT Id (V (69),. -_1 c . -- d -

aE aE aE E&

Then, by substituting the above 3 equations along with Eq. (61), the "lattice"

contribution to the second-order susceptibility can be written as

25
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2
X(2)(latt e2  Y 2
ijk tice) =- bonds (V2 + V2)5 /2

1 d d Eopt
V2 + V2).---) + 2(V - 2V" (70)

where a distin:tion is made between the magnitude of the interatomic distance

vector, d, and the ith component of the interatomic distance vector d i (i.e.,

3
-dix This contribution to the second-order susceptibility is called

the "lattice" part since it has been derived fromn ato,nic displacements (both

relative atomic motions and bilk piezoelectric distortions) due to the dc elec-

tric field. In fact, the lattice response to the dc field enters into the for-

Tmilarizdtion as a single factor, (A/ 3 E dc), which is the change in the inter-I

atomic distance vector with respect to the dc electric field.

In summary, the second-order susceptibility has been described in teri

of the Bond Orbital Model. General formjlae (Eqs. 62, 66 and 70) have been de-

rvved, which permit direct calculation of the first-order susceptibility and the

electro-optic, second-order susceptibility for any compound with a known crystal

structure. The necessary BOM parameters (V2 , V3 and y) are readily available

and the only missing ingredient is the factor that quantifies the lattice re-

sponse to the dc electric field. Some examples on evaluating this factor are

given below. The second-order susceptibility then can be converted to an

electro-optic coefficient, rikj , by using Eq. (34) in conjunction with Eqs. (3),

(10), and (62).

A few numerical applications for the first-order susceptibility and the

electronic contribution to the second-order susceptibility and electro-optic

tensor are illustrated in Table 1. Comparisons with experiment will be

26
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meaningful only when the lattice contribution to the second-order susceptibility

is included in the calculation and therefore will be postponed until later.

2.1.4.3 Application to Tetrahedrallly Coordinated Coiipounds

The prescription for calculating susceptibilities, given in the

preceding section, has been applied to the binary zincblende compounds. Since

all bonds are equivalent, the summations over bonds which appear in Eqs. (62),

(66) and (70) can be simplified to give analytic expressions that do not contain

any suimmations. By factoring the BOM parameters out of tie sutmnatio, because

they are independent of bond, tie sumiations can be evaluatei for tho foy,

interatomic distance jectors:

= (1,-,-I) d/'3 (72)

a(3) :(1 I - )dlV7 (73)

a(4) : - ,- , ) d/,/-3 (74)

where d = /7 a/4 and a is the lattice constant. The summation in Eq. (62)

becomes

ddd 4d2/3 fori (75)
4 bonds 0 for i j

. and the summation in Eq. (66) becomes

- d k (+4V/ d3/9 for i , j k

L._, dididk :I (76)

4 bonds 0 for i = j or i = k or j k

28
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However, the choice of signs for the four interatomic distance vectors in

Eqs. (71)-(74) was arbitrary. The crystal could have been represented equally

well by (I = - , ,-)d/J-3, 4(2) = (-1 1 1) d//_ , j(3) = (1,-1,1)d/,/- arid

1(4) = (1,1,-l)d/V . Equation (75) is invariant to this sign chdnge but

Eq. (76) is not; the right-hand-side of Eq. (76) must be negated. Before deal-

ing with the lattice response necessary to proceed with Eq. (70), the sirplifie

expressions for Eqs. (61) and (66) will now be written as

We -1'2 V2 d2{,Ne 2  )7-2 for i j

12 (V V -2 -)

X 2 3 (77'1

for i j

and
J/ Ne3 y V2 V d3

2 v- - 5/2 for i * j k24 (2+V)/

X j2) (electronic) { (78)Xijk
0 for i = j or i = k or j =k

respectively, where N = 3/v 4/a3 = 3,1/16/d3 is the electron density (i.e.,

the number of electrons in four bonds). These two equations agree with Eqs. (4-

28) and (5-13) of Reference 3.

In order to simplify Eq. (70), the lattice response in the binary zinc-

blendes, induced by a dc electric field, must first be estimated. As the ini-

tial step, consider only the ionic displacive portion of the lattice response.

Using GaAs as a specific example, the relative motion of a Ga cation, in a dc

field, will be determined with respect to a rigid lattice of As anions. This

29
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relative motion is illustrated, in an exagerated fashion, in Fig. I for

tdc Ed x. This perturbed interatoinic distance vectors can be written as

f(1) -- [1 - ], 1, 1/)dl3 (79)

3(2) : - 5] , -1 ldl, (8)

3(4) = -[1 + 6], -1, Id/.I (32)

where u = ux = 5d/,/3 x is th_ relative vector displacement of the Ga cation. ,y

associating two lattice vibrational frequencies with a "classical" spring

constant, K,
21

=1 4
K - 3'-7 (C + 8.

2 F 0 1

where C. and C, are the "bond-stretching" and "bond-bending" force constants,

the displacement can he obtained. The force of the displaced Ga cation is

equated with the force exerted by the dc electric field on this cation:

r = K+ = ee* tdc (83)

where u is the vector displacement, e is the electronic charge, e* is the

dimensionless "transverse" effective charge and tdc is the applied dc electric

field corrected for the dc surface charges. Solving for the displacement gives

3ee* tdcd2u' + :_ _ ( 8 4 )., u 7-T + 8WIT

and e*, CO and C have been calculated or tabulated in Reference 3.
T 0 1

.30
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SC81-14061
Y

As(3) As(1
(-Z) (z

As(4d (2) 2

( +z) (-Z)

z

Fig. I Relative motion of Ga cation in a rigid lattice of tetrahedrally
coordinated As anions, induced by a field, dC.

x.
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Now, referring back to Eq. (70) along with Eqs. (79)-(82) and (84),

evaluate the lattice response factors (adi/aE c) and (ad/aElc) for each of the

four bonds. The first factor is

I J- Ed ui  -3ee* d2

-6d1 7 E T for i j
ad. J E c o 1

- (85

aEd
0 for i j

which leads to a summation, in the crystal geometry factors in Eq. (70), of

I d for i =j
E.' 4 bonds k

dJ3di ((1 • opt

4 bonds aE d k

0 for i *j

+4u/E. for i = j k (86)

0

since d -4u This summation is taken to be zero when retaining
4 bonds k

terms only to first-order in the displacement. To first-order in 6, the second

factor becomes

ad _ d -=_517 - d (87)
- cTC __ - _dc- - -

aE E.
'3

where, for example, the - sign is for bonds 1 and 2 while the + sign is for

bonds 3 and 4 when E dc Ex , By performing a binomial expansion on the squared

root,

32
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ad 6 d (±)jli (±. Ted 2 (

3 j

where is the inagnitude of the displacement. Suhstituting this into the l~

terin of Eq. (70) gives

d d +~ v O)t '3 ee* d h s()dd

ar. o 4

and this last summra-tion reduces to

Z ) =$4d-/3 for '92j t
4 bonls i k 9 for i= ior i= kor j=

s in Eq. 176), the sign is dependent upon the choice of sign for the fo-ur

interat niic distance vectors. Final ly, by replacing the results of Eqs. {F

(89), and (90) into Eq. (70), the ionic displacive lattice contribution to th.,

second-order susceptibility for zinchiendes can be written as,

3 Ne3e~.y 2V2(V2 V'd
x (2 (lattice) T- 2- -- 2 V 3 (1

24 (V2 + V2) (C + 8C
2 3 0

where N is again the electron density. Numerical examples using this last

equation along with Eqs. (77) and (78) are presented in Table 2 for the simple

tetrahedral solids, which have force constants listed in Table 9-1 and

transverse effective charges calculated fron Eq. (9-24) of Reference 3.

The BOM susceptibility formulae for the zincblende compounds, i.e,

Eqs. (77), (79) and (91), can be readily modified to accommodate the chalcopy-

* rite, abc2, crystal structure. In the "quasi-cubic" approximation,16 the

33
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chalcopyrite is regarded as being a zincblende with two different types of bonds.

Then, the summations over bonds in Eqs. (62), (66), and (70) reduce to two ter-

instead of a single term; one for a-c bonds and another for the b-c bonds. Each

of these two terms is evaluated separately using the appropriate set of 1301-

paraneters and interatomic distance which characterize the corresponding bond.

For exa'iple, the first-order susceptibility of Eq. (77) beco-nes

Ne 2 + 2 for i j

(1 (2 V3 , 2 3: b-c
xij

for i tj 

The se,.ond-order susceptibilities can similarly be written as tw) terms with the

leading numeric factor being halved to compensate for the separation of the

contribitions frrii the two types of bonds. The "quasi-cubic" approximation

leads an isotropic first-order susceptibility, i.e. X(1) = (2 = (1).
(11  2 33 *i!

wise, the second-order susceptibility has x(2) 321 = (2) = 32x
X12 3  32-13 32

(2) X(2) If the actual symmetry of the chalcopyrite structure (T2m) isKI2 231•

employed in Eqs. (62), (66), and (70), then the degeneracies in the suscepti-

bilities are broken: X(i)= (1) # (I) and f (2) (2) = (2) (2)

1 X22  x33  a ×1 2 3  321 213 3121

(2) = (2),
(132 -231

2.1.4.4 Lattice Dynamics

General formulae, which can be used to determine the first- and second-

order susceptibility tensors, have been given in Eqs. (62), (66), and (70). All

three of these formulae require a knowledge of i) the crystal geometry which
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specifies the interatomic distance vectors and ii) the BOM parameters that

characterize each type of bond. In addition, the last formilae (Eq. 70)

requires a knowledge of iii) the lattice response Lo a dc electri: fiell. Tnfi

purpose of this section is to provide one detailed procedure for evaluating ti,,

latter lattice response factor,

Te approach taken here is intended to give only the ionic displaciv;e

contribution to the lattice response. Hence, the calculated electro-optic

coefficients should be compared with "cla-iped" electro-optic easirenent.

Briefly, the method liay be outlined as follows. Consider a-i iso,,ire1

atoi (:Y0,, which is free t,) move in res;).)ns3 to a "dc electric field,

surrounded by a rigid lattice of N neighboring atou'is (-41, 2, ... N). Let atov

#] be couple.1 to each of t'iese fixed neighboring atois by a classical spring,

which is characterized by the sp-ini constant, Ki, where i = 1,2, ... N. For

siiall displac,_ients, the relative rrvition of atom #0 with respect to the rigid

lattic can be determined by equatinj the force, which the electric field exerts

on the effective charge of atomi 40Q, with the force that the N springs exert on

atoi #0 when it is displaced fron equilibrium. The spring constants are quan-

tified by treating atom #0 as a simple harmonic oscillator and solving the

equation of motion for frequencies and normal modes of vibration. By associ-

ating the frequencies of vibration with the IR absorption (Reststrahl) fre-

quencies, the spring constants are determined.

In order to specify the problem in more detail, let 0 be the vector to

the equilibriuin position of atom #9, let r be the vector to the displaced

position of atom #0, let u be the vector displacement, and let i. be the vector
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to the fixed position of atom #i (i 1, 2, ... N), as illustrated in Fig. 2 for

N = 3. Assuming that all springs are unstretched when atom #0 is at its

equilibrium position, the force, i' on aton #0 due to the ith spring is

-K r r r r (93)

where A. I is the unstretcheJ length of the ith spring, A. - Aj is the

1 01

stretched length, (jri - A- Jri - ro0) is the amount of stretch in the ith

spring, and (Ai - )/Ii - Aj is the direction of the restoring force for the

ith spring. Note: defining the restoring force as being directed from the

displaced position of atom #0 to the fixed position of atom #i assumes that the

spring "connections" to the atoms are free to pivot.

When the dc electric field is zero, the equation of motion for atom to

is

d2* N r. - r
m + LKiHAr - " - i -rr- 0 1 0

i-l Iri  - A1
(94)

where mo is the mass of aton #0. The simple form of this differential equation

results from the assumption of an isolated atom coupled to a rigid lattice.

If a spring which connects two atoms, both "free" to respond to external

influences, is included, then a more complicated set of coupled differential

equations must be solved. The displaced position of atom #0 is related to the

equilibrium position by

A = + U (95)
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and it is the vector displacement u which undergoes simple harmonic motion.

That is,

+(t) : cos (Wt + ) (96

and therefore

d d2r ,

d. r 0 d2dt-7 = ct-- + T7-." - (97)

where U .XK AYY + Azz is a siall quantity. Then, the equation of notion

becoine

,2 (0 - . 1 - (r% - r) 9 .

This equation represents a set of nonlinear differential equations which are

coupled in the three unknowns, AX, Ay, and Az.

The nonlinear factor in Eq. (98) can be linearized in the following way.

Let io - o which inplies that d -Fi - -Y i z-o-
10 0 10 1 0 1 01

Then, the x-component of the nonlinear factor in Eq. (98) can be written as

Ir _ I0 d io (xi - x0 - AX)

----(xi -x) Ti X- T--i-Yo- --- i-Zo-zy
xi - - AZ 7

--- 4-T- -yo --- Y r- o Fo

(xi - X0 -Ax)

i 1)[(X - X)AX + (Yi - Yo
) &y  + (zi - Zo)Az]

where only term in first order in Ax, y and Az have been retained. By using the

binomial expansion on the denominator, this nonlinear factor becomes

J
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1 i T,°0 (x - x) - Xo Ax) +(X dO Ao +~x (Xi Xo)(y i o -

~ - 1 + 1=
---i -- (x. ix) (x.i - A)+ i(.- Xo)2Ax + (x. - x (y1 - yo ).y

r r 1100io

(xi " 0 )(zi -Z) " (9

Finally, the linearized equation of motion can be written as

+ o 2O + .+ . ." -" i "r )11,r ro " u} 0 (100"
i ii - r0 (

which is an eigenvalue equation in the displacement variable, .

By diagonlizinj the matrix, A, whose elements are giveqi by

N -K.
A -ri -r r

mn il i  - roo 0 2on

the eigenvalues, m o2, are determined and, hence, the three frequencies are

associated with the three normal modes of vibration for a given set of sprinj

constants, Ki (i = 1,2, ... N). An appropriate set of sp-ing constants can he

found nunerically by using iteration techniques, in which the Ki's are varied

the eigenfrequencies obtained match the experimentally observed lattice

optical phonon frequencies.

Once the spring constants are known, the "dc" electric field can be ap-

plied and the force exerted by this electric field will exactly balance the

forces of the springs on atom #0. Specifically, again linearizing the forces of

the springs (see Eq. (99)), we obtain

N K.
eetdc=+ +1 1 i I){(ti - r1V ) (102)

1 01
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where e* is the effective transverse charge. Solving this equation for the

displacement vector, 5, will result in the determination of the ionic displacive

lattice response factor, (3EdC .
3

Initial steps have been taken in applying the above procedure to

Tel 2 . Since the telluiumi atons are mu-h heavier than the oxygen atoms,

assu,,lnj that the tellurium ato)ns formi a "rigid" lattice is probably a

reasonable approximation. Using the details fron the crystal structjral

Jeter:nination,22 consider an oxygen with an equilibrium veotor position (in
coordinite units ot A) of = (0.6 , I.?q, 1.39). Its "first" nearest neighbor

tellijriun atois are located at rI = (0.1n, 0.10, 0.00) and -2 = (2.30, 2.49,

I.11), which correspond to dl:) = 1.92 and d20 = 2.09 1. respectively. Tne

bond angle between the oxygen and these two telluriun atoms is 140.S', which

differs considerably with the 169 ° suggested in Reference 22.

Couplinj the oxygen atoln to only these two tellurium atoms is not

sufficient to constrain the oxygen to the specified equilibriun position. At

least one additional coupling must be included for the equilibrium position to

be uniquely determined. The next nearest neighbors to oxygen atom #0 are two

pairs of oxygen atoms. One pair has an interatomic distance of 2.65 A and the

other pair is 2.75 A away. However, utilizing any of these four oxygen-oxygen

couplings would complicate Eq. (94); that is Eq. (94) would become a coupled

differential equation since the motion of one oxygen atom would now depend on

the variable positions of other oxygen atoms.

In order to maintain the uncoupled form of Eq. (94), oxygen atom #0

must be viewed as interacting only with tellurium atoms. Therefore, the third
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coupling is made to the next nearest tellurium atom, located at = (-0.10,

-0.10, 3.31) with d30 = 2.90 A. The spring between this tellurium atom an,'

oxygen atom #0 might be considered as a "collective" spring, representing the

coupling between oxygen atom #0 and all other neighbors except telluriLm atom,

#1 and #2.

The infrared frequencies of vibration in TeO 2 have been determined from

reflectivity and Raman spectra. 23 The two highest energy modes should corre-

spond t) the longitudinal and transverse notions of oxygen #0 with respect to

tellu-iurs #1 and #2. The experiment23 has a pair of high energy modes for both

the longitudinal and transverse cases. The longitadinal frequencies are 812 and

720 c9 - 1 whereas the transverse frequencies are 769 and 643 cm-1. The simpli-

fied model assunied above would have these pairs of frequencies appear degenerate.

Therefore, for the purpose of determining the spring constants in Te02, the

geometric mean of these pairs of frequencies is used, giving longitudinal and

transverse modes which correspond to 764.6 cm - I = 13.1p and 703.2 cm-1 = 14.2w,

respectively. Note that the geo;netric mean is employed instead of the arith-

metic average since the former can be done in frequency or wavelength and give

consistent results, whereas the latter can not.

In order to simplify the fitting procedure of the spring constants, the

two springs between oxygen atom #0 and tellurium atoms #1 and #2 are assumed to

be characterized by the same spring constant, even though the interatomic dis-

tances are slightly different. Then, by obtaining the eigenvalues corresponding

to the matrix specified by Eq. (101) for any given set of spring constants, a

reasonable fit to the experimental absorption frequencies was accomplished. The

set of spring constants, KI = K2 = 197 g/sec 2 and K3 = 270 g/sec2 , yield
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absorptions at 761.6 cm-1 = 13.13p, 699.3 cm-1 = 14.30p and 169.9 cm-1 = 58.86%.

The highest energy vibration (13.131,) is identified as a longitudinal mode sinc.

the corresponding eigenvector is only 6.60 away from being parallel to the

interatomi c distance vector between telluriurn atons #1 and #2. The other two

modes (14.30;, and 58.86,) are transverse because their corresponding eigen-

vectors are nearly perpendicular to this telluriuii interato:nic distance vector,

deviating by 6.6' and 0.6' respectively. The lowest energy absorption (58.86.)

can also be compared with the eKperinent. 2 3 There does exist a transverse !node

at 174 cm - I = 57.5, which agrees rather well with the calculated value.

The final step of determining tle displacement of o)ygen atom #0 in

response to a "dc" electric field is complicated by the fact that the transverse

effective charge in Eq. (102) is dependent upon the direction of displacement in

addition to the crystal structure. This dependence has been evaluated for a few

specific crystal structures, 3 ani a general solution will be obtained in the

follow-on to this contract. Until the transverse effective charge is deter-

mined, the ionic displacive contribution to the second-order susceptibility can-

not be calculated in TeO 2. Furthermore, the sensitivity of the displacement

vector with respect to the "collective" spring constant needs investigation.

But this too requires an evaluation of the transverse effective charge and,

hence, will be postponed to a later date.

One last comment can be made regarding the applicability of this lat-

tice dynamics model. The relative motion in zincblende compounds suggested by

Fig. I should be adequately described by Eqs. (93) - (102). Consequently, an

alternate expression to Eq. (91) may be obtained which depends directly on the
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infrared absorption frequencies rather than the force constants, C0 and C1 .

Presumably, these experimental absorption frequencies are more readily available

than the latter force constants for the zincblende compounds. Additionally, the

similar ionic displacive motion that occurs in the chalcopyrites should also he

accommodated by Eqs. (93) - (102) by permitting distinct springjs between a-c an!

b-c atomq pairs.

2.1.4.5 Symmetry

The symmetries of tile calculated first- and second-order susceptibility

tensors, determined by the sunmiations over bons in Eqs. (62), (66) and (70) of

various combinations of interatonic distance vectors, must reflect the symmetry of

the lattice. This point was illustrated for the zincblende structure in Eqs.

(75), (76), (86), (89) and (90). The symnetry requirements on the second-order

susceptibility are specified by the point group symmetry. 7 And as mentioned pre-

viously, thermodynamics requires the first-order susceptibility to be symmetric.

The formulae associated with the BOM must fulfill these symmetry requirements.

Examining the first-order susceptibility expression, Eq. (62), it is

obvious that the crystal geometric factor for each bond, didj, is symmetric in i

and j. Therefore, the summation over bonds is also symmetric in i and j. The

electronic contribution to the second-order susceptibility, Eq. (66), is almost

as simple. The crystal geometric factor for each bond can be written as didjdk ,

which is symmetric in i, j and k, as is the summation over bonds. However,

Kleinman's symmetry 5 implies that the second-order susceptibility coefficients,

arising from electronic processes where there is no absorption or dispersion,
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are symmetric in all three indices. Consequently, the BOM electronic

contribution to the second-order susceptibility is seen to be consistent witi

Kleinman's symmetry condition. Finally, no general statement can be made, at

this time, concerning the symmetry of the crystal geometric factors in Eq. (70),

which describe the lattice contribution to the second-order susceptibility.

Presumahly, as indicated in Eq. (28), these factors will turn out to be sy:nm-

metric in i and k only.

2.? Experimental

The experimental efforts in this progrda:i have focussed on two nateri-

als: TeO 2 (telluriujri diDxide or paratellurite) and Tl3AsSe 3 (thallium arsenic

selenide or TAS). In much the sane nanner as was showr, in the theory, we have

chosen materials in which w? hope to be able to experimentally separate the

electronic and ionic contributions to the E-O effect. TAS is a ternary

chalcogenide semiconductor with a moderate bandgap of - leV. Although there is

some evidence of soft mode behavior 24 in this system, it is thought that the

dominant mechanism in TAS is the electronic response. TeO 2 possesses character-

istics that suggest comparable contributions from both effects to the E-O re-

sponse. Being a well known acousto-optic mdterial ,25 TeO 2 exhibits a soft mode

phase transition 26 under moderate pressure (- 9 K bars). Additionally TeO 2 has

a reasonably high c(.) of approximately 4 and an c(o) of about 25. Our experi-

mental efforts in T13AsSe 3 to date have been of a rather preliminary nature and

will be completed during the next few months. The TeD 2 work has progressed much

more quickly and is essentially complete (see Appendix A) at present.
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2.2.1 TeO 2

The point group symmetry 22 of TeO 2 is tetragonal: 422. This implies

that the material iE optically uniaxial and has only two non-zero electro-optic

coefficients (r41 = -r52 ).
7 TeO 2 is also weakly piezoelectric having one non-

zero piezoelectric coefficient 27 dl . = 8.13 x 10
- 12 C/N, indicating there is

considerable response of the lattice to the presence of a dc electric field.

Although Kleinman's symmetry 5 suggest that materials having the symmetry of 42?

should have no non-zero second-order susceptibility coefficients, the underlying

assumption of Kleinnan's formalism ,ake it inappropriate when one of the elec-

tric fields is dc (4 = 0), as is pointed out ahove (see Theory). In any case,

experiments14,15,23,29 have shovel that there is an apparent "violation" of

Kleinman's symmetry in TeO 2 even at optical frequencies (both electric fields

have w * 0). We shall, therefore, examine the details of the dc E-0 effect in

this material.

If light is propagated along the <011> direction, the two normal modes

occur with the polarization along <100> (ordinary) and along <011> (extraordi-

nary). The impermeability tensor becomes:

0 -r E
0

EB r0 -n1  + r4 1 E (103)

.41Ey r41E x  ne

Ie

If we write the polarization vector:

P= (Xx I 1z) (104)
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where i = the polarization direction cosines, we can calculate the dielectric

response by:

1
R = P(B)P =

01-£ 0 -r4E-rZE r1 X zn 411y x0

1

0 1 r E

0
r411x y16

-r E r E (15))
41 y 41 x ,17 z

e

fe nw in particjId- for E E and P wh100), whic is the ordinar

poladrization:

R n-1 0 0) 1 0 0 1 1
0 0

o 1 r E 0n= 41 x

1 1 1

0 r 0

1 X r41Ex

ee

Tefr n _ 2r41 Ex + -4 (107)

m0
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where ne(eff) is the effective extraordinary index for a propagation direction

of <01>. Thus it is only the extraordinary index (or mode) that is affected

for our particular choice of the crystal cut which is shown in Fig. 3.

An experimental sample which utilized the interaction geometry shown in

Fig. 3 was constructed fron TeO 2 single crystal material that was obtaineJ

commercially from Crystal Technology in Mountain Vie,, California.

The actual dimensions were 1.9 x 0.57 x 0.72 cm. Crystallographic

alignment was accomplished using the X-ray back reflection Laue technique. A

typical alignmeit shot taken normial to the <100> face is shown in Fig. 4. Th ?

saple was wire sawed out of a larger boule and then ground and polished. After

final polishing of the end optical faces, the sa.n)le was viewed using monochro-

natic (6328A) light, as shown in Fig. 5. When monochromatic polarized light was

propagated to excite both optical modes, and then examined at the output with a

crossed polarizer, an interference pattern (see Fig. 6) resulted which indicated

that the saiple was slightly wedged. By simultaneously reflecting a laser bean

off tne front and back surfaces, the wedge angle was found to be approximately

0.3 degrees. This agrees well with the number that is derived by measuring the

distance between the fringes, and substituting into the following relations. The

phase difference, r, between the ordinary and extraordinary mode is given by:

r 2 (n (eff) - n (108)X e O

where x = optical wavelength, ne(eff) and no are the refractive indices, and k

the interaction length. The phase difference between adjacent fringes is given

by:
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Fig. 3 TeO2 electro-optic sample configuration.
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Fig. 4 Laue X-ray photograph of<lOO>surface in TeO 2.
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AP -2 (ne (eff) -no) ( 92) (109)

where tI and £2 are the respective interaction lengths for the two fringes. Tne

absolute phase difference, between adjacent light (or dark) fringes a distanc',

do apart, is r. Further, one can relate the distance between fringes, do, to

the wedge angle, a, by:

d 0- (110)
2aFe 0

using the small angle approximation. If the optical path length changes, the

fringe pattern will rnve up or dovn depending on the sign of the effect. 'J

course, this change in optical path length may result from either of two different

effects: 1) a change in the physical length of the crystal due to mechanical

strains induced by the inverse piezoelectric effect and 2) a change in the (ex-

traordinary) index of refrastion. We shall show below that the first effect is

negligible in TeO 2. Therefore, assuming that the fringes move only as a result

of a change in the index, the distance the fringe pattern moves, d1 , is given

by:

Z (ne (eff) - ne (eff))--" ( -C eTrT --r-T- (

in the limit of small a. Here ne (eff) = ne(eff) + An (eff) with Ane(eff )T2 e nneeef

-2nJ (eff) r41Ex where we have assumed that the index has been modified by a dc
electric field, Ex . Taking the ratio of dl/d 0 and solving for r41 , we obtain:
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rT = A(d /do)/ZEn 3(eff) • (112)

All that is required then is to measure the fractional shift in the f-inge

pattern for a given applied electric fiell. In order to quantitatively deter-

mine this ratio, the sample was placed in the optical setup shown in Fig. 5.

Photographs of the fringe patterns and the fiducial crosshairs for

various applied fields are shown in Figs. 6a - 6c. The applied voltages were

-4.9, 0 and - 4.9 kV. The result was Jl/d o  1/2 for 9.3 kV. This corresponds

to an index change of ne(eff) = 8.3 . 10-6 and an electro-optic coefficient of

Ir 41 = 0.76 . 10-12 m/V. The sign of this electro-optic coefficient was ob-

tained by correlating the direction of the fringe shift, the wedge angle and the

sign of the applied voltage. The result is that r41  - 0.76 x 1 1 2 m/V. Tho

closely spaced fringes in the lover right corners of Figs. 6a - 5c are probably

due to a slight rounding of the presumed flat optical face near the edge of the

sanpl e.

An estimate of the physical distortion to the sample due to the strain

resulting frc.i the inverse piezoelectric effect, is given by the following:

ei = d.iE. (113)

where ei is the strain, d is the piezoelectric coefficient and E is the ap-

plied electric field. The only non-zero piezoelectric coefficient 30 for the

point group 422 is d14 . The measured value 27 for Te0 2 is d14 = 8.13 x 10-12 C/N.

The change in wedge angle resulting fron the piezoelectric strain induced by an

electric field of 9.8 kV is 0.0090 or 0.3% and will, therefore, be neglected.
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The strain induced by the inverse piezoelectric effect does, however,

affect the index via the strain-optic effect giving rise to a change in

impermeability given by:
3 1

AB Piej Pijdk.EK (114)

j j~k

where Pij is the relevant component of the photoelastic tensor fur Te0 2 - Indepli

we may define a secondary electro-optic coefficient by:

r~~= Pi d. (115)
1 K < j k i

Since in our experiment EK E1 and dkj =d 1 4 , P44 is the only non-zero

component which contributes to the secondary E-0 effect. This component has

been measured32 and has the value P44 = -0.17. The secondary E-0 coefficient

therefore has the value:

r(2) = P d = -1.38 x 10- 12 m/V (116)
41 44 14

Using the applied dc voltage of 9.8 kV, we deduce a change in effective index of

An e(eff) = +1.50 x 10-5  . (117)

If we now subtract this result from the number which was experimentally derived

(at constant stress), we obtain
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One (eff) )exp -(An,(eff))SE,_ 8.3 x 10~6- 1.5 x10

--0.67 x 10 . 112 9)

This in turn yields a value for the prniry E-0 coefficient at constant strain

of:

r S=+0.62 x 10 12nT/V (1 19)14

where the superscript S indicates constant strain ("clamped"). This valuie can

be compared with other nonl inear optical :neas~irecments in Te0 2; for exanple,

Id SHG = 1.45 10 esi- 9 = R x 9.61 x 10 - n/V (120)

derived from second harmonic generation ineaSUrernents. 14 ,15 ,28,29 (Note that the

d14 here is distinct from the piezoelectric coefficient referred to above.)

S ad SHG
These comparisons should not be riade directly between r4  ad 1 d Instead they

should be made between the electro-optic susceptibility:

n2n2r
eo o oe 41 . 10-12 M (121)
X41 - n/

adthe second hamncgeneration susceptibility SHG4
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2.2.2 T13AsSe3

Thallium arsenic selenide or TAS is a ternary semiconductor which

crystallizes with the trigonal point group symmetry 3m. This implies that TAS

is optically uniaxial and should have 4 non-zero electro-optic components:7 r13,

r2 2, r3 3, and r51. This compound has been the subject of extensive investiga-

tion for its optic, 3 2 acousto-optic, 3 3- 35 and non-linear 36 (second harmonic

generation) properties. It is transparent from the near (0.9 lim) to mid (14 wri)

IR. By using some of the formalism associated with the dielectric imper'neabil-

ity tensor derived above (Section 2.2.1), we now examine the electro-optic

effect in TAS.

As a preliminary example, let us consider the case of an x-y-z

rectangular prism cut so that the long dimension is along x. The dc electric

field is a :,'ied norhal to the long direction and along y. The third direction

or z, is parallel to the optic axis. Light is then propagated along x and

polarized along y (ordinary) or along z (extraordinary). The dielectric

impermeability tensor is then:

0 0
01

B 0 + r E(122)
r 2 2 Ey 51Ey

0 r51Ey

e

* The off-diagonal components, r5 1Ey, produce a small rotation of the

indicatrix about the x axis by an amount:

tan 2e 1 2r 5 1 E - (123)
11 +r

nz n 22 Ey0 e
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An upper estimate of this rotation (assuming r2 2 = 100 x 10-12 m/V) for voltages

of 5KV is o < 10, and, therefore, this effect will be ignored. Light polarized

along y (ordinary) has the effective index:

n3r E
n=n 0 - 0-22 (124)

while the other polarization (along z or extraordinary) remains

n = ne (125)

Therefore, it is only the ordinary component which is affected by the dc

field. If we then arrange to have the incident light linearly polarized 45°

between y and z, or along <011>, both modes will be excited. Oue to the

difference in propagation velocities, the two modes will emerge out of phase

with one another by an amount, r, given by:

2-TZ (An) (126)

where as before z is the interaction length, x is the wavelength and n is the

birefringence (ne-no). The polarization state at the exit face will be in

general ellipitcal, with circular and linear polarizations as specific cases

(for 900 and 00 or 180' phase differences, respectively). As we have shown, if

an electric field is applied along y, then the birefringence, and hence, r,

changes by:
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n3E r
X 2 y (127)

The total phase retardation is then

r + Ar = 27j ((An) - n3Eyr 2 2i (12K

To experimentally observe this effect, we set up the sample and optics

as shown in Fig. 7. The laser used was a He-Ne 3.39 an laser. The compensator

was adjusted to give linearly polarized light with no field applied. The pola-

rizer was then "crossed' so that essentially n) light was observed at the detec-

tor. As the electric field was increased, a series of oscillations in the sig-

nal from the detector was observed as the state of the light exiting the cryst3l

changed ellipticity. The voltage required to change the signal by one oscilla-

tion (or the phase by T) is called the half-wave voltage V7 and is given by:

-2 O 22 (129)

-n 3n V r22  (3l
0 V r-2 zo=r2 (130)

where y is the distance between the electrodes. Letting y and z be of unit

dimension:

v, .(131)
n 0 r22
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The sample used in this preliminary experiment was fashioned fro n an

in-house grown 36'3 7 boule of TI3AsSe 3. The sample was first wire sawed froon tho

boule and then mechanically ground and polished (on the optical faces) to fin-

ished dimensions of 0.36 x 0.32 x 1.27 cm for y, z and x, respectively. Silver

paint was used for electrodes. The sample resistance with no applied field was

greater than 20 Mohmn which meant the resistivity was more than 2 x 107 ohm-cm.

This is consistent with the room temperature, and an approximately I eV band-

gap. 36 Figure 8 shows the data for this preliminary experiment.

Using the voltage between peaks of 2.2 kV and the sanple dimensions of

1.27 cm for z and 0.36 cm for y and the room temperature index at 3.39 i m of

3.37, we find rT 11 x 10 "1 2 m/V, and the half wave voltage V 8 kV. This'22 TT

result includes the piezoelectric-induced effects.

Our next experiment, to be carried out under the follow-on to this

contract, will be to place the electric field along z, with the same sample

geometry as befire. The dielectric imperneahility tensor then becomes

1_*1+ rl 3 E3  0 0
0

B 0 F + r1 3 E3  0
0

n0 33  (132)
e

With light propagating along x and polarized along y, (the ordinary mode), the

index becomes:

n3r E
no - 0 (133)
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Fig. 8 Plot of detector intensity vs applied voltage from electro-optit
measurement in T13AsSe3.

62

Ni4~



91 Rockwell International
Science Center

SC5266. IFR

The orthogonal polarization along z (the extraordinary mode) has the followiir

index:

n3re 332 31

it is co'nio practice to define the effective birefringence in ter-is of a

conbined electro-optic coefficient rc:

,, (ne n) 3 13 O
er 0 - e -- nr 33 - on3

E r3
(n,- n) 2 C

c 3-rT. (136'

The field dependent phaise retardation is then

A7 =LIT 1 'n3r -~ )

= 27 r E n3  (137)

The half-wave voltage V IT in this case is:

2v z r V n3/y (138)
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v n - -- ( 1 3 9 )

e c

for unit sample dimensions.

It will, therefore, be possible to measure r. using the sane experi-

mental arrangement as before, by merely remoiing the silver paint electrodes

fro:n the y-faces and placing them on the z-faces.

The coefficient r13 can be independently obtained by a longitudinal

measurement on a z-cut plate. The index change seen by light propagating along

the z dire:tion polarized in the x-y plane (pure ordinary) is simply:

n 3
0 rlE (140)

n no  - 13 3

which can be measured in a Fabry-Perot configuration. Then by knowing r1 3 and

r., we can calculate r3 3. The coefficient r51 can be measured as a rotation of

the indicatrix using a longitudinal geometry with propagation along the y axis.

Finally, in order to obtain the "clamped" electro-optic coefficients,

rsit it will be necessary to experimentally determine the piezoelectric

coefficients and photoelastic constants of TI3AsSe 3 ,

*
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3.0 SUMMARY AND RECOMMENDATIONS

In summary, this progra1 has advanced well, with significant progress

being made on both the theoretical and experimental portions of this program.

The groundwork has been established for the theoretical approach to the electro-

optic effect in solids. The underlying philosophy to our method is to use a

generalized "cheiical bond" approach to the first- and second-order electric

susceptibility. This methodology utilizes nearest-neighbor interactions, ai!

parametrizes the relevant matrix eleients in terms of universal ato,iic paral-

eters. Calcjlations, therefore, only reqjire a knowledge of e~le:nt3l

coposition ail the atomic bond configurations. This approach lends itself to

predictive comparisons of electro-optic response not only within a given crystal

structire (making elenental substitutions) but between different structures as

well.

Details of the methodology associated with the Bond Orbital Model have

been given along with applications to the specific cases of the chalcopyrite and

zincblende crystal structures. Initially, however, the Bond Orbital Model was

only applicable to calculations of the response of the electronic systen to

probing fields of frequencies above the Restrahl frequency and below the first

inter-band or interactomic transition. Therefore, the next level of sophis-

tication introduced into the problem was an attempt to include the lattice

dynamics.

The approach here (still being developed) was formulated in terms of

the microscopic spring constants. Knowing these spring constants, one could, in

principle, calculate the relative displacement and resulting lattice distortion
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of a crystal in the presence of a dc electric field. Then, by knowing the new

equilibrium ionic positions, one can recalculate the susceptibility and hence

the electro-optic effect. The process is evolving along lines oriented towards

obtaining these microscopic spring constants from macroscopic measurable proper-

ties of the materials such as elastic constants or lattice mode frequencies.

This approach tends to somewhat diminish the overall generality and, theref.)re,

predictive properties of the method in that ,lore measurements are required be-

fore the calculations may be undertaken. This, however, should not be taken as

an end result, but rather as an intermediate step in an evolving process. At

sone future date, it is hope.l also to) be ale to generalize the lattice respon'-

to stru,;ture and e,eentil conposition, thereby recovering the predi ctive

capabilities.

The experimental portion of this progra:l has involved measurements of

the electro-optic effezt in Te9 2 and Tl3AsSe 3. The TeO 2 data is complete and

has yielded tm! val ie r - 0.61 X 1 2/V. Experiments on T13AsSe 3 at

3.39 m hae? just begun but a preliminary result indicates r 2  " 11 x 1012 rn/V.

Further measurements will be carried out on TI3AsSe 3 during the next phase of

the progrd1 to obtain rll and r 3 3 . Additionally, other materials such as SbSI

and Ba'ium Titaniu-n Niobate (BTN) will be approached experimentally during the

next phase of this program. SbSI has one of the highest reported piezoelectric

coupling coefficients of any solid, 38 and should have a correspondingly large

electro-optic effect. BTN has been shown to have a significant electro-optic

effect. 39 Structural considerations have shown that it may be possible to

substitute lanthanum or potassium on some of the sites in the unit cell.
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Our recommendation, therefore, is to proceed with the theoretical wor,

to approach a completely generalized formalism which has predictive capabili-

ties. In addition, the experimental work should proceed to evaluate materials

which provide insight and feedback to the theory, as well as provide new hijh

performance materials for further applied device efforts.
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APPENDIX I

LINEAR ELECTRO-OPTIC EFFECT IN TELLURIUM DIOXIDE*

M.D. Ewbank and P.R. Newman

Rockwell International Science Center
1049 Camino dos Rios

Thousand Oaks, CA 91360

ABSTRACT

The only non-zero dc electro-optic (or Pockel's) coefficient in

tellurium dioxide was measured at constant stress. The result was r4 T -0.76

X 0-12 in/V. The secondary electro-optic effect, due to the converse

piezoelectric and photoelastic effects, is approximately twice the observed

electro-optic response.

*This work was supported by ONR contract number NOOO14-80-C-0498.
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I. INTRODUCTION

Tellurium dioxide (paratellurite or TeO 2) is a well-known acousto-

optic material, 1'2 utilized in devices such as acousto-optic tunable fil-

ters, 3 ,4 beam deflectors and modulators. The anomalously slow acoustic shear

velocity, 1 in the <110> direction which can be associated with the onset of a

soft lattice mode transition,5 leads to a favorable acousto-optic figure-of-

merit. The presence of nearby phase transitions in ferroelectric materials

which exhibit superior electro-optic behavior6 suggests that the electro-optic

effect in TeO 2 may also be enhanced by this softening lattice mode. Conse-

quently, the room temperature value of the single non-zero dc electro-optic

coefficient (rT1) for TeO2 was determined experimentally at a wavelength of

6323 A.

II. EXPERIMEPIT

The point group symmetry7 of tellurium dioxide is 422, which implies

that TeO 2 is optically uniaxial and has only two non-zero electro-optic

coefficients (r41 = -r52).
8  An optical quality sample of TeO2 was

fabricated, using material obtained commercially from Crystal T- olo Inc,,

with the orientation for the measurement of r41 indicated in Fig .

*, , optical faces, 1.9 cm apart, were perpendicular to the <011> direction, and

the silver-painted electrodes, separated by 0.57 cm, were normal to <100>. A

schematic of the optical setup is illustrated in Fig. 2. At a wavelength of

2
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6328 A, TeO2 is optically transparent and its refractive indices at room

temperature9 are no = 2.2585 and ne = 2.4112.

For light propagating in the <011> direction and polarized in the

<21 > direction (i.e., at 45 degrees from <100> and <011>) both the ordinary

and extraordinary modes of propagation are equally excited. When the ordinary

and extraordinary beams exit the TeO 2 sample, the relative phase shift, r,

between ordinary and extraordinary beams, assuming that the dc electric field

is zero and that the front and back surfaces are exactly flat and parallel,

will be

r = (2rx/x)(ne (eff) - no) (1)

where X is the sample interaction length, X is the wavelength, and no is the

ordinary index. The effective index of the extraordinary wave, ne(eff), for

this propagation direction is given by the relation10

n (eff) n o1 noe/Hn + F' (2)e e o e

with ne being the extraordinary index.

Since the ordinary and extraordinary waves have equal amplitudes, the

intensity of the analyzed beam will vary with the orientation of the analyzing

polarizer, because the polarization state of the unanalyzed light is either

linear, elliptic or circular depending on the relative phase retardation of

the two modes. If the front and rear surfaces of the sample are wedged

3
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slightly, an interference fringe pattern will result. The spacing, do,

between adjacent fringes which have a relative phase shift of r, can be

written:

d(3)
0 2ain~ (eff) -777]

in the limit that the wedge angle, a, is small.

When an external dc electric field, Ex, is applied in the <100>

direction, the extraordinary wave experiences a change in impermeability
ofT

of r41 Ex, which corresponds to an effective extraordinary index change,

Ane eff), given by10

Ane(eff) -rTiExn(eff)/2 (4)

in the approximation that this change in index is much less than the index

itself. The superscript "T" indicates that the measurement is performed under

constant stress ("unclamped")6. (This change in effective index is maximized

for the <011> propagation direction only in the limit of the birefringence

approaching zero. For the birefringence of Te02 at 6328 A, the maximum occurs

when propagating about 3 degrees away from the <011> direction; but the

difference in effective index change for these two propagation directions is

less than 0.5% and therefore is negligible.) Since the dc electric field does

not affect the ordinary wave, the phase shift between ordinary and

extraordinary modes will change with external electric field by an amount that

4
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can be determined by combining Eqs. (1) and (4). More specifically, the

fringe pattern will shift by a distance, d1 , when the dc field is applied:

X[ne(eff) - n e(eff)]
dI  --- [ne(eff) - no] (5)

where n'(eff) is the effective extraordinary index for a non-zero dc field

(i.e., ne(eff) = ne(eff) + Ane(eff)). The fringe shift with respect to the

separation between fringes can then be written as the ratio:

(dj/d 0 ) -! 2, Ane(eff)/x (6)

in the approximation that the change in effective extraordinary index is much

less than the effective birefringence, [ne(eff) - no]. Finally, the electro-

optic coefficient, rT can be expressed as a function of this fractional

fringe shift, the external dc electric field, the wavelength, the sample

interaction length and the effective extraordinary refractive index in the

following form:

T -X(dj/d o )41 LE ne(eff)x e

Voltages of -4.9, 0.0 and +4.9 kV were supplied to the electrodes on

the x-faces of the Te0 2 sample and produced the interference fringe patterns
I

shown in Fig. 3. The relative motion of the fringes, or fractional fringe

5
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shift, was determined, from photographic measurements referenced to a fixed

cross-hair, to be approximately 1/2 fringe (± 20%) for an applied voltage

change of 9.8 kV. It should be noted that the closely spaced fringes in the

lower right corners of Figs. 3a, b, and c are probably due to a slight round-

ing of the presumed flat optical face near one edge of the sample. Addi-

tionally, the fine rectangular fringe pattern is caused by Fresnel diffraction

from the sample aperature. The wedge angle was found, by comparing simul-

taneous reflections from both optical faces, to be approximately 0.3 degrees,

which is roughly consistent with the number of major fringes shown in Fig. 3.

Since the wedge angle is so small, Eq. (7) has been used to calculate a room

temperature value for the magnitude of the electro-optic coefficient of TeO 2

at 6323 A, which was Ir T 0.76 - 10-12 m/V. Equation (4) indicates that

this corresponds to an effective extraordinary index change of bne(eff) = 8.3

x 10-6 .

The sign of this electro-optic coefficient was obtained by correla-

ting the direction of fringe shift with respect to the sign of applied voltage

and the orientation of the wedge angle with respect to the optic axis. The

orientation of the optic axis was determined by noting that, for this direc-

tion of propagation, the extraordinary beam experienced a "walk-off", with

respect to the ordinary beam, of 3.7 degrees in the direction of the optic

axis. Referring to the fringe patterns in Fig. 3, the electrodes lie on the

faces perpendicular to the fringes, with the ground electrode being on the

upper right face. The wedging, as determined by retroreflection, indicated

that the interaction length in the portion of the sample, which corresponds to

6
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the region near the upper left surface of Fig. 3, is longer than the interac-

tion length near the lower right surface. When a positive voltage was applied

to the lower left face, the fringes shifted toward the lower right where the

interaction length has decreased. In order to maintain a constant phase

difference fer a given fringe, the optical path length must remain the same.

Since the physical path length decreased for a positive voltage, the index

apparently increased to yield a constant optical path length. Then, by

utilizing Eq. (4), the electro-optic coefficient, r4 l, must be negative.

Finally, the results of this electro-optic measurement on TeO 2 at

6323 A can be summarized as

rT 1276
41 0.76 -1 2 /V (8)

for the room temperature value.

III. DISCUSSION

The above experiment with TeD 2 measures relative changes in optical

path lengths between ordinary and extraordinary waves, caused by the applica-

'z of an external dc c tric field. However, thre- physical phenomena can

ir a change in the optical path length: (1) the electro-optic effect

-. ....-c!)y changes the refractive index, (2) the converse piezoelectric

ch changes the physical dimensions of the crystal (in particular,

... ';&, and (3) the secondary electro-optic effect (the photoelastic

7
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or strain-optic effect due to the converse piezoelectric, induced strain)

which also modifies the refractive index.

The strain, ei, which results from the converse piezoelectric effect,

can be calculated by using the relation:
11

e i = d.i E. (9)31 3

where dji is the piezoelectric coefficient and Ej is the electric field. The

physical deformation can then be estimated from the measured value of the only

non-zero piezoelectric coefficient 12 (d14 = 8.13 - 10-12 C/N) and the external

dc electric field. This shear strain corresponds to a change in wedge angle

of approximately 0.3% for an applied voltage change of 9.8 kV and a negligible

fringe shift.

The secondary electro-optic effect gives rise to a change in

impermeability, A i , given by
13

ABi Pij ej I i kj Ek (10)

where Pij is the photoelastic constant, ej is the piezoelectric strain, dkj is

the piezoelectric coefficient and Ek is the electric field. Then, the

secondary electro-optic coefficient. ri(),- can be defined by the equation

d (11)ik~i kj

8
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Since d14 is the only non-zero piezoelectric coefficient, only P44 contributes

to r) in Eq. (11), and this photoelastic constant has been found

experimentallyl (P44 
= -0.17). The secondary electro-optic coefficient is

-1.38 x 10- 12 m/V, which corresponds to a change in effective extraordinary

index of Ane(eff) = +1.50 x 10- 5 using an equivalent form to Eq. (4) with a

1.7 x 106 V/m electric field. Subtracting this secondary electro-optic

coefficient from the measured value at constant stress (see Eq. (8)), one

obtains the primary 13 electro-optic coefficient for TeD 2:

r = +0.62 x I0-12 m/V (12)

where the superscript "S" indicates constant strain ("clamped").
6

There have been numerous measurements of the second harmonic

generation (SHG) coefficient in Te0 2
9,14-16 which have shown a violation of

Kleinman's symmetry relation. 17 The results of these measurements yield a

reasonably consistent value of approximately

!d!41 1.45 x 10- 9esu = ° x 0.61 x 10- 12 n/V (13)

for a fundamental wavelength of 1.064 Pm, and where E is the permittivity of

free space. Note that this d14 is distinct from the piezoelectric coefficient

in Eqs. (9)-(11). In addition, both the symmetric and antisymmetric nonlinear

optical susceptibilities for sum and difference mixing have

9
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been measured in Te0 2 , and the symmetric coefficient is in good correspondence

with the SHG value in Eq. (13).18

Previous attempts have correlated the second order susceptibilities

of optical rectification and the linear electro-optic effect. 19 Also, com-

parison with SHG have been made, 21 ,2 3 but only when absorption and dispersion

are negligible (i.e., the same conditions for Kleinman's symmetry1 7). These

comparisons should not be made directly between r 4 andSHG. Instead, they

should be done between the electro-optic susceptibility,
19

eo one 4 1 = -1.5 x m12 i/V , (14)
X41 47

and the second harmonic susceptibility, d14. Since a non-zero SHG coef-

ficient for TeO2 violates Kleinman's symmetry, the necessary assumptions about

absorption and dispersion must be inappropriate and, hence, the relationship

between the electro-optic and SHG coefficients for TeO2 is not straight-

forward.

Qualitatively, the SHG coefficient, while being non-zero, is still

recognized as being small in magnitude when compared to other materials. As a

consequence, the electronic contribution to the electro-optic effect is

assumed to be approximately zero. Then, since the measured electro-optic

coefficient is also small, the conclusion is that the expected soft-Mode

enhancement of the ionic contributions to the electro-optic susceptibility

does not occur.
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VI. LIST OF FIGURES

1. Crystal orientation for TeO 2 electro-optic sample.

2. Optical configuration of electro-optic measurement.

3. Interference fringe patterns in TeO2 for (a) -4.9, (b) 0.0 and (c)

+4.9 kV.
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